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THE INTERACTION OF STATISTICS AND GEOLOGY -- FINITE DEFORMATIONS

by G.S. Watson, Princeton University

ABSTRACT

The paper describes briefly the instances where the analysis

of geological data has required the development of new statistical

theory and methods. A new instance of this fruitful interaction

of statistics and geology is then given. §2 develops the theory

of finite deformations. Some of the classical and novel statistical

problems which arise when objects embedded in a deformed rock are

measured for strain estimation are discussed in 3.
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1. INTRODUCTION

Sir Ronald Fisher (1953a) in a Presidential address to the

Royal Statistical Society on the "Expansion of Statistics" used

as his first example the statistical thinking of Lyell whose

"Principles of Geology" is now 150 years old and whose publication

is celebrated in this volume. While this is an example of statis-

tics helping Geology, it did not lead to developments in Statistics.

In this paper we wish to consider (with key references) some in-

stances of mutually beneficial interactions and to describe some

specific results of interest to structural geologists and

statisticians.

In the same year Fisher published his famous paper on "Disper-

sion on a Sphere" (1953b). Its primary purpose was to provide

statistical methods for the new data of palaeomagnetism but he

also used it to illustrate his theory of Fiducial Inference.

Though orientation data are not peculiar to Geology and Geophysics,

it was these subjects which first demanded such statistical methods.

This led to a new area of statistical theory and practice and to

the improvement of data analysis in Geology. This story is now

quite well known -- see e.g. the paper of Watson (1970) and the

book by Mardia (1972). Watson's paper contains brief sections on

orientation analysis in Palaeomagnetism, Sedimentology, Structural

Geology and Petrofabrics. An update of this would discuss among

other things the relation to Plate Tectonics and the use of orien-

tation statistics to estimate the angular momentum vectors of
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the plates and their finite displacements. (see e.g. Molnar et al ( )
The mutually beneficial interaction of Statistics and Geology

and Mining in the description of the fabric of sediments and the

~~dispersion of commercially valuable ores is also well known and

particularly associated with Matheron and the Fontainebleau School.

Less well known perhaps is the enormous interaction in quan-

titative Seismology. mainly due to the towering figure of Sir

Harold Jeffreys. In his book "The Earth" (1962-first published

1924) he remarks (p.395): "It is astonishing that experimenters

will spend months in making a series of observations and grudge

the day or so needed to present the results in an intelligible

form". This led him to write two books "Scientific Inference"

(1931) and "The Theory of Probability" (1939). The latter was the

first large scale account of Statistics from a Bayesian point of

view. Jeffrey's did not, as a classical scientist, espouse sub-

jective priors. To obtain his priors he required that they be in-

variant under functional transformations of the parameter in

question. This rule is the basis of some modern accounts of

Bayesian methods e.g. Box and Tiao (1973).

But there is much more in the 1939 book that is of current

interest to statisticians whatever their views on Inference. For

example, he remarks that while different observers looking at a

seismogram will usually agree to a second or so when a particular

wave train arrived, occasionally there are discrepancies of 10 or

so seconds. Thus the normal distribution for arrival times will

not be followed. He models this both by a distribution with
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heavier tails then normal and as a "contaminated" distribution.

He points out that the maximum likelihood (m.l.) estimator

for e in the density f(x-e) satisfies, with data X1 ,...,x no

f'(x- 0 He writes

wx-exe):: ; (x-e f(x-e) " W(x-e

so that the m.l. equation can be written as

and that i is thus a weighted mean of the observations. He

goes on to regard the observations as a mixture of Gaussian and

long-tailed distributions. These ideas are precisely those sug-

gested much later by Tukey, Huber and others concerned with Robust-

ness -- see e.g. Andrews et al. (1972), Mosteller and Tukey (1977).

Modern theory and data analytical methods in Quantitative

Seismology may be best studied now in the two-volume work of Aki

and Richards (1980). In an early paper however, Scheidegger (1964)

suggested the method for estimating the fault plane movement along

which caused the earthquake being analyzed. In this paper he in-

troduced the probability density proportional to expKcos2  which

was independently suggested by Dimroth (1963) and Watson (1965)

for other orientation problems. Scheidegger wrote other papers

on this area with Fara with whom he also wrote the first paper on

the stochastic description of sedimentary fabrics--Fara and Scheidegger

(1961). However most seismological data analysis is either
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generalized regression analysis or, more interestingly, very

elaborate time series analysis. References to the latter topic

may also be found Brillinger (1975) -- the review of the uses of

spectral analysis in Geophysics by Tukey (1965) should be

especially noted. Seismic methods for exploration raise many

problems -- see e.g. the papers and books by Enders Robinson e.g.

(1978).

The analysis of seismic signals may be pursued to investigate

their source (e.g. earthquake or explosion) or to investigate the

media they pass through from source to receivers. This theory is

of course based on the theory of elastic deformations. Structural

* geologists also use the theory of elasticity to unravel the history

of rock formations.

In the next section a brief account is given of a simple form

of elastic deformation, homogeneous strain. In section three,

some statistical problems suggested by homogeneous strain are

described as another example of a fruitful interaction between

Statistics and Geology.
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2. HOMOGENEOUS STRAIN

While in seismology one usually deals with small reversible

deformations, over long time periods rocks acquire large strains

-- see e.g. Ramsey (1967). These might be the result of a

sequence of linear deformations or homogeneous strains. In this

section we summarize the description of such strains in p

dimensions. In practice p-2 or 3

.4 A physical deformation, if linear, is characterized by

matrix k with whose determinant It1 > 0 . For the transforma-

tion must grow from I and be 1 - 1 . Since its determinant

cannot change sign and is initially positive, it must remain so.

Any two points initially joined by a vector k0 of length so

are separated by s after the deformation, where

s - -

When the deformation is small, the left hand side of (1) is

approximately 2(s-so)/so . Hence the strain tensor or matrix

is defined by

If the etgen vectors and values of k are ti and nt

respectively (i a 1...p) , the n, are called the extensions

since they equal (S-so)SO when i0 is in the direction

The ni may be negative if there is compression in the direc-

tion positive if there is tension and ni > -1/2
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In spaces of odd dimension, since > 0, must have

at least one positive elgenvalue and to each positive elgenvalue

corresponds an invariant direction. There are, however, p

mutually orthogonal directions which remain so after deformation

and it is easy to verify that these are defined by the eigen-

vectors ti of , the principal strain axes. Deformation

corresponds to a rotation of these axes and extensions along

them.

A strain 'is said to be pure if and only if it leaves

invariant p orthogonal directions l'''p' say. Thus these

vectors must be right etgenvectors of k with non-zero

* roots, l ... ,gtp , say. Writing k - [ ,..., p] , k(a)

diag(al,..., p), we have the symmetric form for

* t~ci~k' .(3)

In this case,

- 1/2(Q(Q2) -p) (4)

The general deformation k may now be decomposed into a

rotation kj,1k11 - 1 , followed by a pure strain k1 q or a

pure strain k2 followed by a rotation k2' 12l " 1 . These

are Just the polar decompositions of k. Since k a M1" Z2k

2 " 2k + kp so that a suitable choice for 2 is

ksk (5)

k2 WSW
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where S- V2-n.+ . Then is given by

" R(6)

4 The other factorization uses the eigenvectors of = 2

Deformations are often described in terms of their effects

2on a quadric surface, ' -c centered at . It will be
moved and become the surface

K I

, c2

Thus the image uf a sphere, called the strain ellipsoid, is

S(c 2  (7

and the ellipsoid that has a spherical image, called the

reciprocal strain ellipsoid, is

C a c" (8)

- The principal axes of (7) and (8) are those of 1 and k2

respectively.

If the strain is small, k " lp + k, k small, so that,

approximately,

It is customary, when dealing with small strains, to write the

displacement * Bx - x of a point x as
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+

= + (10)

where the skew-symmetric matrix describes the rotation and

the pure strain, which are now additive. Thus, approximately,

nA0

l= 2= + Ip ' 1 = = + kp (11)
I

4-o

L
4
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* 3. STATISTICAL PROBLEMS WITH HOMOGENEOUS STRAINS

Strain must usually in Geology be determined by the deforma-

tion of objects embedded in the rock. It is e.g. rarely possible

to use devices like strain gauges. Further the rock is opaque

so we are usually restricted to data obtainable from the surface

of plane sections cut through rock samples. We must of course

know something of the original shape and distribution of the

objects.

Point-like objects distributed at random (by a Poisson

process) with unknown mean density X per unit volume in the

I rock would be useless. For the points in any region go with it

under the transformation kwhile the volume of the region in-

creases by the factor IkI so the transformed field of points

is again Poisson but with density X/I1I If X~ were known

could of course be found. Jkl is called the dilatation of the

strain. To get more information about k , the points distribution

must have more structure, as will be seen below. But interesting

mathematical problems remain in the study of affine transformations

of stationary point processes, more general than the Poisson

process.

If we could measure the initial positions ki at n points

and then measure the final positions kk, k may be estimated

when e.g. the measurement errors in both cases are independently

Gaussian with mean vectors zero and covariance matrices a -21 -

see Gleser and Watson (1973). Unfortunately though this might
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be used in glaciology, it is not of use with ancient rocks. This

problem is a generalization of the "errors in variables" problem

in a situation where it admits a clean solution. The simple

form (p=l) of this problem may be found in textbooks (see e.g.

Theil (1971)) on Econometrics: y=B&+f, x=&+e where the errors

of measurement e and f of x and y are independent Gaus-

sians with means zero and variances a2  and a. If 2 and

a 2  and { are arbitrary and unknown, there is no satisfactory
y
solution basically because each new observation introduces a new

unknown { . But if ax=ay , there is a satisfactory solution.

Useful information about the strain matrix may however be

obtained from points with unknown initial positions but arranged

in special patterns e.g.

(i) lines of known initial length

(ii) angles of known size

(iii) spherical or nearly spherical bodies.

As an example of (i) , consider a crystal of tourmaline embedded

in a rock which is then stretched in the direction of this long

narrow crystal. The crystal will break into a number of pieces

if the strain Is large enough. The initial length is the sum of

the pieces. The final length is the distance from the beginning

of the first fragment to the end of the last. An example of (ii)

would be a brachiopod whose shape is roughly like a semi-circle

before deformation. The radius perpendicular to the base is,

after deformation, inclined at a measurable angle to the base.
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It is estimated that 70% of all strain studies are of type (iii).

Oolites (concretory structures) are a common source of data.

They are initially roughly spherical so their final shape will

be (roughly) the strain eillipsoid. Cutting plane sections

through solids and studying the statistics of the intersections

with the embedded bodies leads to well known problems. The

theory of such methods usually assumes purely random planes--

however structural geologists usually make cuts related to the

roughly known strain axes which changes the methods.

Statistical methods for these problems were outlined in

Watson (1968) and will appear in Watson (1981). Many papers

have appeared in the interim -- see e.g. the discussion organized

by Ramsey and Wood (1976) and the references therein. One paper

-- Owens (1973) -- is particularly interesting and a sequel to

March (1932). It discusses the modification under strain of an

angular density distribution.

Let f0 () denote the density of lines with direction ,

V4 =1 in the solid before deformation. Then f0 ()6w o  is

proportional to the number of lines in the cone about t with

solid angle 6wo . After deformation, the axis of this cone will

be parallel to and its volume will be J I times its

previous value 6wo/ 3 . If the new cone has solid angle 6Sw,

its length is lI I , and so its volume is •6wj/3 Hence

I kj6wo a HullI'6w,
-T-
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or

6wo " ~l (12)
0 6w,

The new density fl of line directions is then determined by

the fact that the number of lines in each cone are equal i.e.,

by

f Ifq(a/4 1) 6W1 f o1 ) (13)

Using (2.12),

; ,~ QVl I /( H  f()n [ 0 14)

. as obtained by Owens in different notation. Hence putting
U

(14) may be rewritten as

fl(T)z fo 1n / OUlnk-l'T (15)

A full discussion of this method of modifying spherical

distributions will be given in Watson (1981). Note however that

if fo(4)-fo(-t) , the same is true of f, and that if B is a

rotation (14) reduces to flB_) - fo(_) . These are both

necessary checks. Furthermore if fo * (4w)'1 , the uniform

distribution, in (15), the non-obvious formula

elE 'dw I - IBi (16)

IeI - 1

is a consequence of the integral of fl(m) being unity.

1i



-13-

Much of the profit that statisticians may derive from the

study of homogeneous strain comes from the physical intuition

it associates with linear transformations. To those interested

Vin orientation or directional statistics it may seem awkward

because unit vectors before strain usually do not have unit length

afterwards. However many directional distributions are often best

thought of as distributions of vectors v , conditional upon

I 1I=1 or marginally i.e. after integrating out their length and

"I retaining only their direction. For example, the Arnold-Fisher-

von Mises distribution with density proportional to expK '

where k'o, II II - I =I 1 can be obtained exactly as the

marginal distribution of k = Rt , a Gaussian vector with mean ,

covariance matrix a2kp , when k is fixed. But it may be

obtained to a very good approximation as the marginal distribution

of t -- the distribution actually obtained is the angular Gaussian.

For mathematical and numerical comparisons see Watson (1980a,b).

As a matter of history it is interesting to note that Arnold's

Thesis (1941) was motivated by the dissatisfaction of J.F. Bell

with the then available methods for analyzing data on the preferred

direction of the optical axes of crystals in rocks. Prof. Bell

subsequently had a distinguished career at Johns Hopkins in

Mechanics. Geology has certainly benefitted from the development

of these methods. Thus this is an example of the fruitful inter-

action of Statistics and Geology.
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